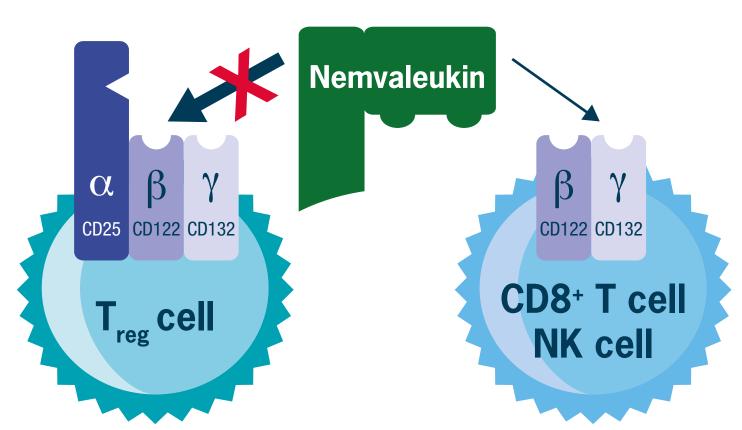
BUILDING BRIDGES // BREAKING BARRIERS

SGO // PHOENIX, ARIZONA // MARCH 18 - 21, 2022

ARTISTRY-7: a Phase 3, Multicenter Study of Nemvaleukin Alfa, a Novel Engineered Cytokine, in Combination With Pembrolizumab Versus Chemotherapy in Patients With Platinum-Resistant Epithelial Ovarian, Fallopian Tube, or Primary Peritoneal Cancer


Thomas J. Herzog,¹ Kathleen Moore,² Panagiotis A. Konstantinopoulos,³ Lucy Gilbert,⁴ John L. Hays,⁵ Bradley J. Monk,⁶ David M. O'Malley,⁵ Jalid Sehouli,⁰ Nonali Desai,⁰ Yan Wang,⁰ Yangchun Du,⁰ Lei Sun,⁰ Rita Dalal,⁰ Robert L. Coleman¹o ¹College of Medicine, University of Cincinnati, Cincinnati, Oh; ²College of Medicine, University, Columbus, OH; ¹College of Medicine, University of Cincinnati, Oh; ¹College of Medicine, University of Oklahoma, Oklahoma City, OK; ³Dana-Farber Cancer Institute, Boston, MA; ⁴McGill University, Columbus, OH; ⁴Arizona Oncology, University of Arizona College of Medicine, Creighton University, Columbus, OH; ⁴Arizona Oncology, University of Arizona College of Medicine, Creighton University, Columbus, OH; ⁴Arizona College of Medici

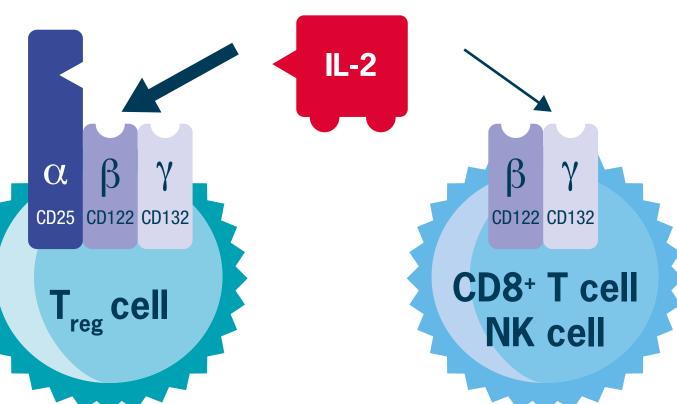
INTRODUCTION

Nemvaleukin Is a Novel, Engineered Cytokine Under Evaluation in Platinum-Resistant Ovarian Cancer (OC)

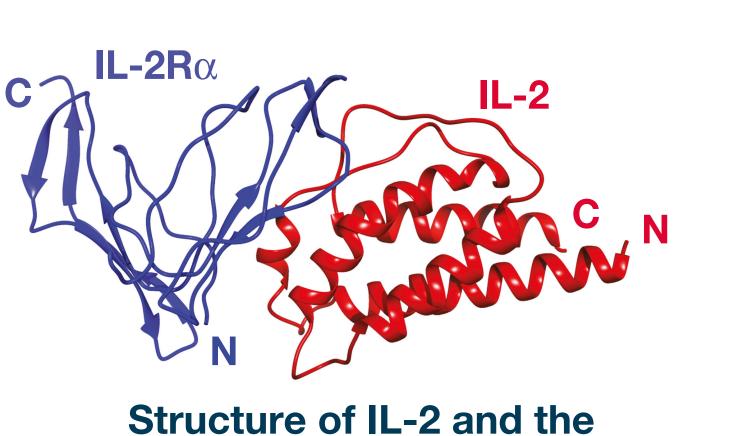
- Despite the initial success of standard frontline platinum-based chemotherapy in the treatment of OC, 70% of women will have recurrent disease within 2 years of this treatment.¹
- Nemvaleukin is an engineered cytokine designed to selectively bind to the intermediate-affinity interleukin-2 receptor (IL-2R) for preferential activation and expansion of tumor-killing CD8+ T cells and natural killer (NK) cells, with minimal expansion of regulatory T cells (T_{regs}), as well as mitigation of toxicities associated with high-dose IL-2 (Figure 1).²
- IL-2 has both immunosuppressive and immunostimulatory functions, mediated by its interaction with different IL-2R complexes (Figure 2).²

Figure 1: Nemvaleukin Is a Stable Fusion of IL-2 and IL-2Rlpha

Nemvaleukin alfa



Nemvaleukin was engineered using native IL-2 and the extracellular region of the IL-2Ra domain

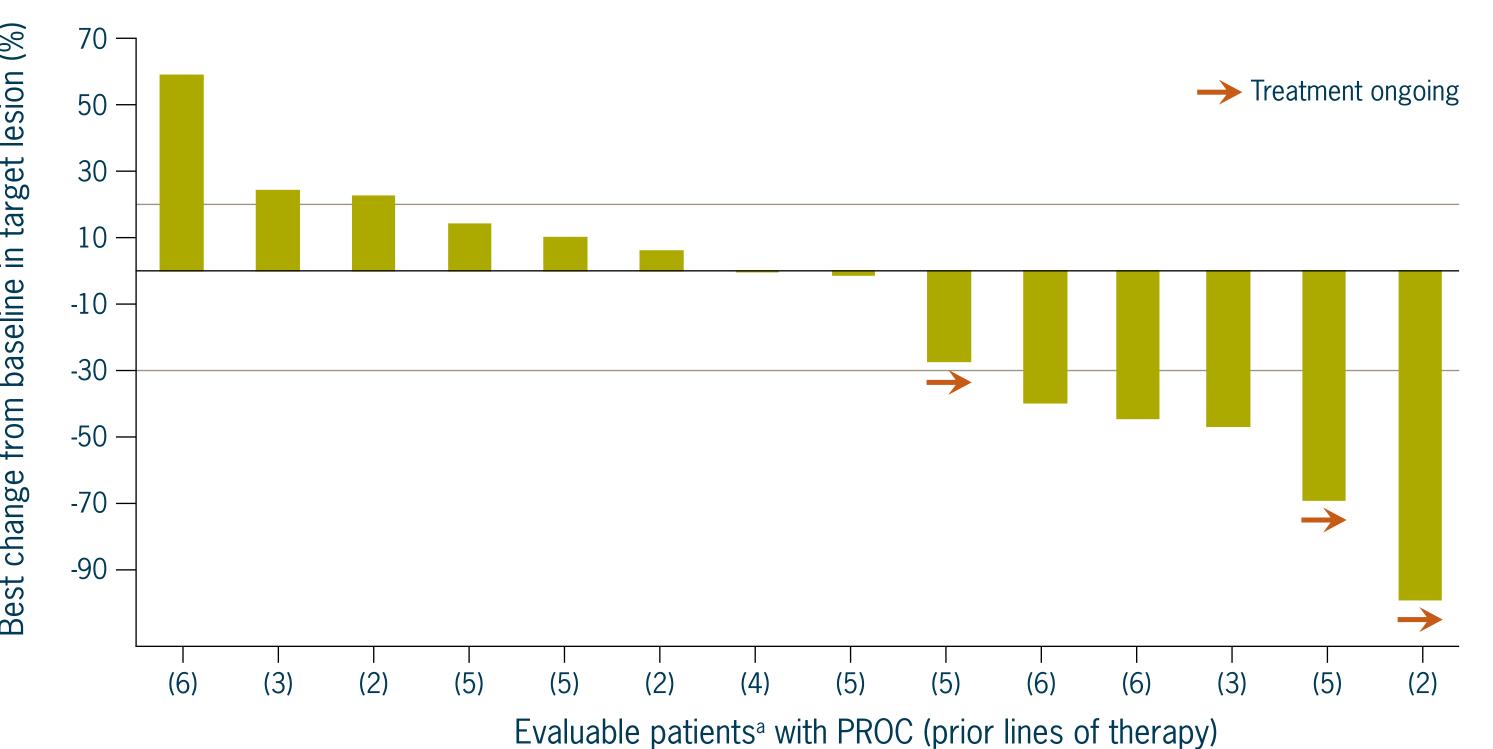

 Stable fusion protein that is intrinsically active immediately upon systemic entry¹ • Does not require metabolic activation or degrade to native IL-21

Sterically occluded from binding to the high-affinity IL-2R¹

Figure 2: Cell Activation by IL-2

extracellular domain of IL-2Ra

Potently activates the high-affinity IL-2R, which is preferentially expressed on immunosuppressive T_{regs} and vascular endothelial cells¹


 Preferential binding of high-affinity IL-2R by high-dose IL-2 leads to expansion of T_{regs}, which may counteract antitumor activity as well as stimulate vascular endothelial cells, which can upregulate the high-affinity IL-2R and are associated with severe toxicities, including capillary leak syndrome¹

Clinical and Preclinical Nemvaleukin Studies Have Shown Responses Across a Broad Range of Tumor Types, Including in OC

- kinase inhibitors) was enhanced in combination with nemvaleukin in preclinical studies.³⁻⁵
- In clinical studies, responses to nemvaleukin, as monotherapy and in combination with for responses to combination therapy in platinum-resistant OC [n = 15, 14 evaluable
- Monotherapy: objective responses in 4 patients with renal cell carcinoma
- The observed safety profile of nemvaleukin to date is consistent with that anticipated
- Nemvaleukin in combination with pembrolizumab has been granted Fast Track designation
- Here we describe the actively recruiting, phase 3 ARTISTRY-7 study of fallopian tube, or primary peritoneal cancer (NCT05092360).

- Antitumor activity of multiple agents (ie, chemotherapy, checkpoint inhibitors, and tyrosine (See Abstract 11982 [oral presentation] at this congress by Winer et al.)
- pembrolizumab, were observed in various tumor types, including breast, cervical, head and neck, gastrointestinal, genitourinary, lung, and platinum-resistant OC (see Figure 3 patients, 2-6 prior lines of therapy]).⁶⁻⁹
- (1 unconfirmed), 2 with mucosal melanoma (1 unconfirmed), and 2 with cutaneous melanoma (1 unconfirmed; 1 confirmed with 4 prior lines of therapy).^{6,9}
- Combination: objective responses in 22 patients; 5 heavily pretreated (range, 4-8 prior lines of therapy).^{7,9}
- from its design.⁶⁻⁸ Moreover, nemvaleukin did not demonstrate any additive toxicity to that already established with pembrolizumab alone.⁷
- for the treatment of platinum-resistant OC by the US FDA.
- nemvaleukin plus pembrolizumab in platinum-resistant epithelial ovarian,

Figure 3: ARTISTRY-1 Best Percent Change in Tumor Size **Among 15 Patients With Platinum-Resistant Ovarian Cancer**

 a N = 14 evaluable patients with PROC who received nemvaleukin 3 µg/kg IV + pembrolizumab and ≥1 postbaseline scan. Response per RECIST v1.1. Data cutoff October 29, 2021.

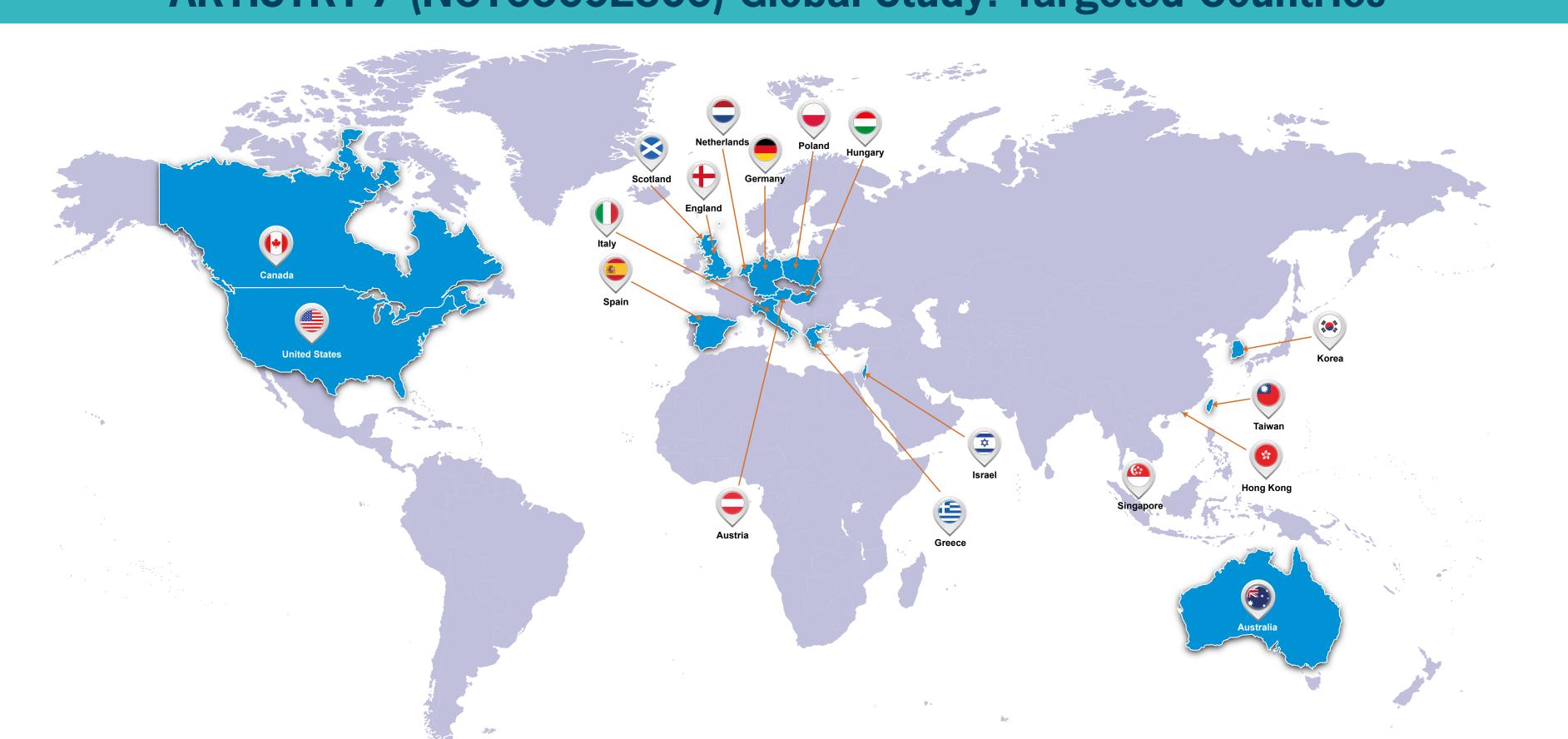
ARTISTRY-7 (GOG-3063; ENGOT-OV68; NCT05092360) STUDY DESIGN

Key Inclusion Criteria

- Females aged ≥18 years with platinum-resistant epithelial OC (high-grade serous, endometrioid, clear cell),
- fallopian tube cancer, or primary peritoneal cancer
- Must have received:
- ≥1 prior line of systemic anticancer therapy in the platinum-sensitive setting
- ≤5 prior lines in the platinum-resistant setting
- Prior bevacizumab
- Prior PARP inhibitor for patients with BRCA mutation
- Evidence of radiographic progression on or after most recent therapy
- Eastern Cooperative Oncology Group performance status of 0 or 1
- Estimated life expectancy of ≥3 months Adequate hematologic reserve and hepatic and renal function

Key Exclusion Criteria

- Primary platinum-refractory disease (progression during first-line platinum-based therapy)
- Primary platinum resistance (progression <3 months after completion of first-line platinum-based therapy)
- Prior programmed death (ligand) 1 (PD-[L]1) therapy
- Prior IL-2, IL-15, and IL-12 therapy
- Epithelial OC with mucinous or carcinosarcoma subtype, nonepithelial tumors
- Fluid drainage (eg, paracentesis, thoracentesis, pericardiocentesis) of ≥500 mL within 6 weeks of study drug initiation


Primary Endpoint

• Investigator-assessed progression-free survival (RECIST v1.1) in patients treated with nemvaleukin plus pembrolizumab vs chemotherapy

Secondary/Exploratory Endpoints • Characterization of antitumor activity (objective response rate, overall survival, disease control rate, duration of response, and time to response) of nemvaleukin and pembrolizumab in combination and as monotherapy

Safety, health-related quality of life, pharmacokinetic/pharmacodynamic effects

ARTISTRY-7 (NCT05092360) Global Study: Targeted Countries

Nemvaleukin (Target n = 141)

Target N = 376

Randomization

Pembrolizumab (200 mg IV) on day 1 + pembrolizumab combination therapy

Nemvaleukin

monotherapy^a

Pembrolizumab

onotherapya

arget n = 47

Investigator's choice

chemotherapy

(Target n = 141)

Target n = 47)

- ↓ ↓ ↓ Nemvaleukin (6 µg/kg IV) on days 1-5
 - 21-day cycle
- ♦ ♦ ♦ ♦ Nemvaleukin (6 μg/kg IV) on days 1-5
 - 21-day cycle

21-day cycle

- Pembrolizumab (200 mg IV) on day 1
- Gemcitabine (1000 mg/m² IV) on days 1 and 8 of 21-day cycles
- Paclitaxel (80 mg/m² IV) on days 1, 8, 15, and 22 of 28-day cycles
- Pegylated liposomal doxorubicin (40 mg/m² IV) on day 1 of 28-day cycles
- Topotecan (4 mg/m² IV) on days 1, 8, and 15 of 28-day cycles^b
- ^aFutility analyses planned to stop the monotherapy arms earlier. ^b1.25 mg/m² on days 1-5 of 21-day cycles is also an option.

Treatment Groups

- Patients will be stratified according to PD-L1 status, histologic subtype, and chemotherapy.
- Patients will continue treatment in the absence of disease progression or intolerable toxicity (maximum 35 cycles for pembrolizumab; nemvaleukin can be continued).
- Patients will be followed for survival beyond treatment discontinuation.

ACKNOWLEDGMENTS

- The authors would like to thank all the patients who are participating in this study
- This study is sponsored by Alkermes, Inc., and conducted in collaboration with Merck, Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA the Gynecologic Oncology Group (GOG); and European Network of Gynaecological Oncological Trial Groups (ENGOT).
- Medical writing and editorial support was provided by Parexel and funded by

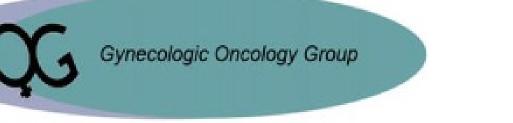
Copies of this poster obtained through this and may not be reproduced without permission of Alkermes.

REFERENCES

Dion L, et al. J Clin Med. 2020;9:2239.

2. Lopes JE, et al. J Immunother Cancer. 2020;8(1):e000673.

. Losey HC, et al. Poster presented at AACR 2017; Abstract #591. Lopes JE, et al. Poster presented at AACR 2020; Abstract #2202.


5. Pan Y, et al. Poster presented at ESMO 2021; Abstract #3326.

6. Lewis K, et al. Poster presented at Melanoma Bridge 2021. 7. Boni V, et al. *J Clin Oncol*. 2021;39(suppl 15): Abstract #2513. 8. Hamid O, et al. *J Clin Oncol*. 2021;39(suppl 15): Abstract #2552.

9. Data on file. Alkermes, Inc.

